Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.

نویسندگان

  • Chengdong Ji
  • Nasim Annabi
  • Maryam Hosseinkhani
  • Sobana Sivaloganathan
  • Fariba Dehghani
چکیده

The aim of this study was to prepare poly-DL-lactide/polyethylene glycol (PDLLA/PEG) blends to improve medium absorption and cell proliferation in the three-dimensional (3-D) structure of their scaffolds. Carbon dioxide (CO2) was used as a foaming agent to create porosity in these blends. The results of Fourier transform infrared (FTIR) spectroscopy demonstrated that the blends were homogeneous mixtures of PDLLA and PEG. The peak shifts at 1092 and 1744 cm(-1) confirmed the presence of molecular interactions between these two compounds. Increasing the PEG weight ratio enhanced the relative crystallinity and hydrophilicity. The PDLLA/PEG blends (especially 80/20 and 70/30 weight ratios) exhibited linear degradation profiles over an incubation time of 8 weeks. The mechanical properties of PDLLA/PEG blends having less than 30 wt.% PEG were suitable for the fabrication of porous scaffolds. Increasing the concentration of PEG to above 50% resulted in blends that were brittle and had low mechanical integrity. Highly porous scaffolds with controllable pore size were produced for 30 wt.% PEG samples using the gas foaming technique at temperatures between 25 and 55 °C and pressures between 60 and 160 bar. The average pore diameters achieved by gas foaming process were between 15 and 150 μm, and had an average porosity of 84%. The medium uptake and degradation rate of fabricated PDLLA/PEG scaffolds were increased compared with neat PDLLA film due to the presence of PEG and porosity. The porous scaffolds also demonstrated a lower modulus of elasticity and a higher elongation at break compared to the non-porous film. The fabricated PDLLA/PEG scaffolds have high potential for various tissue-engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of a reservoir type levonorgestrel delivery system using high molecular weight poly L-lactide

Implantable contraceptive is likely to be a promising new option for fertility control, as we have entered the twenty-first century and the world’s population grows by one billion people in a single decade. The main objective of this study was to develop a subdermal implant for levonorgestrol (a synthetic progestin from 19-norandrostanes) using a high molecular weight biodegradable polymer , i....

متن کامل

Electrospun Poly(l-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair

Tissue engineering-based urethral replacement holds potential for repairing large segmental urethral defects, which remains a great challenge at present. This study aims to explore the potential of combining biodegradable poly(l-lactide) (PLLA)/poly(ethylene glycol) (PEG) scaffolds and human amniotic mesenchymal cells (hAMSCs) for repairing urethral defects. PLLA/PEG fibrous scaffolds with vari...

متن کامل

Preparation of a reservoir type levonorgestrel delivery system using high molecular weight poly L-lactide

Implantable contraceptive is likely to be a promising new option for fertility control, as we have entered the twenty-first century and the world’s population grows by one billion people in a single decade. The main objective of this study was to develop a subdermal implant for levonorgestrol (a synthetic progestin from 19-norandrostanes) using a high molecular weight biodegradable polymer , i....

متن کامل

Biodegradable poly(L-lactide)-poly(ethylene glycol) multiblock copolymer: synthesis and evaluation of cell affinity.

A series of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers (Multi-PLE) with high molecular weight were synthesized and successfully used to fabricate three-dimensional scaffolds. Using mouse NIH 3T3 fibroblasts as model cells, the cell affinity of various Multi-PLE copolymers was evaluated and compared with that of poly(L-lactide) (PLLA) by means of cell attachment efficiency measu...

متن کامل

Poly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges

Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2012